

STAR Beam Use Requests for Runs 22-25

Lijuan Ruan (BNL)

@BrookhavenLab

Executive summary

Table 1: Proposed Run-22 assuming <u>20 cryo-weeks</u>, including an initial one week of cool-down and a two weeks set-up time.

\sqrt{s}	\sqrt{s} Species Polarization		Run Time	Sampled	Priority
(GeV)	100,000			Luminosity	50770
510 pp Transverse		16 weeks	400 pb^{-1} 1		

p+p 510 GeV: probe down to $x\sim2\times10^{-3}$ (gluons) and up to $x\sim0.5$ (valence quarks) regions

Table 2: Proposed Run-23 - Run-25 assuming 28 cryo-weeks of running every year, and 6 weeks set-up time to switch species in 2024. Sampled luminosities assume a "take all" triggers.

Data Taking					
24 weeks Au+Au					
11 weeks pp					
11 weeks p+Au					
24 weeks Au+Au					

<u> </u>			<u></u>
$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$10 { m B} \ / \ 31 \ { m nb^{-1}}$	2023
200	pp	$235 \; { m pb}^{-1}$	2024
200	$p{+}\mathrm{Au}$	$1.3 \; { m pb^{-1}}$	2024
200	Au+Au	$10{ m B}~/~31~{ m nb^{-1}}$	2025

Transversely polarized pp and p+Au with equal nucleon-nucleon luminosities essential to optimize several critical measurements

p+p: enable detailed evolution studies, critical for precise factorization and universality tests, essential baseline for p+Au

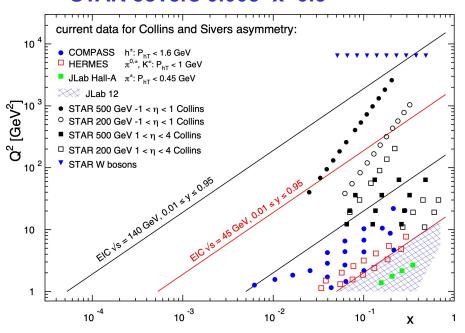
p+Au: probe gluon saturation, quark-gluon structure of heavy nuclei, propagation and hadronization of colored partons

Au+Au: probe the inner workings of the QGP

Physics program

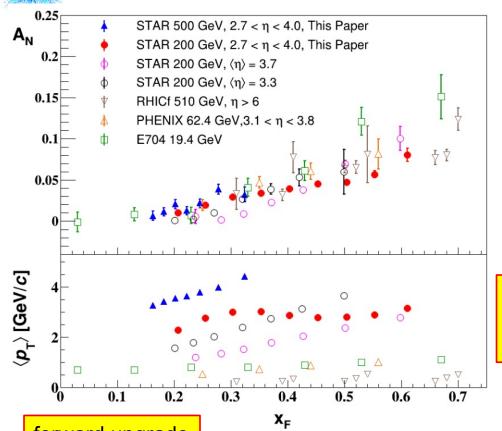
- quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton-proton collisions for initial and final state TMDs
 - Test of Sivers non-universality: Sivers_{SiDIS} = -- Sivers_{DY, W+/-,ZO}
 - > Requirement:
 - > large data sets √s = 200 and 500 GeV p[↑]p
 - → low to high x, highest and lowest x with fSTAR
 - \rightarrow A_{UT} for W^{+/-} Z⁰, A_{UT} for hadrons in jet
- □ First look Gluon GPD → E_ε
 - **□** Requirement:
 - \triangleright data sets $\sqrt{s} = 500 \text{ GeV p}^{\uparrow}\text{p}$ and $\sqrt{s} = 200 \text{ GeV p}^{\uparrow}\text{A}$
 - > A_{UT} for J/ψ in UPC
- Physics driving the large A_N at forward rapidities and high x_F
 - Requirement:
 - large data sets √s = 200 and 500 GeV p[↑]p
 - \rightarrow low to highest $x_F \rightarrow$ fSTAR
 - > charge hadron A_N at forward rapidities
- Nuclear dependence of PDFs, FF, and TMDs
- Requirement:
 - ► large equal data set of $\sqrt{s} = 200 \text{ p}^{\uparrow}\text{p}$ and \sqrt{p}
 - → low to high x, highest and lowest x with fSTAR
 - R_{pA} direct photons and DY, hadrons in jet A_{UT}
- non-linear effects in QCD
- Requirement:
 - > large equal data set of \sqrt{s} = 200 p[↑]p and p[↑]Au
 - → lowest-x through fSTAR
 - \triangleright dihadron correlations for h^{+/-}, γ-jet, di-jets

To address important questions about the inner workings of the QGP


- What is the precise temperature dependence of shear and bulk viscosity? v_n as a function of η
- What is the nature of the 3-dimensional initial state at RHIC energies? r_n over a wide rapidity
- How is global vorticity transferred to the spin angular momentum of particles on such short time scales? How can the global polarization of hyperons be reconciled with the spin alignment of vector mesons? Λ , Ξ , Ω P_H and ρ_{00} of K^* , φ , J/ψ
- What is the precise nature of the transition near μ_B=0? Net-proton C₆/C₂
- What is the electrical conductivity, and what are the chiral properties of the medium? Dielectron
- What can be learned about confinement and thermalization in a QGP from charmonium measurement? J/ψ v₂ and v₁, ψ(2S)
- What are the underlying mechanisms of jet quenching at RHIC energies? What do jet probes tell us about the microscopic structure of the QGP as a function of resolution scale? γ_{dir}+jet I_{AA}, γ_{dir}+jet acoplanarity, jet substructure

BUR for Run-22

\sqrt{s}	Species	Polarization	Run Time	Sampled	Priority
(GeV)				Luminosity	
510	p+p	Transverse	16 weeks	$400 \; \mathrm{pb^{-1}}$	1

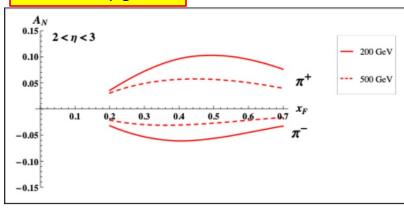

Kinematic coverage for Collins and Sivers Asymmetry STAR covers 0.005<x<0.5

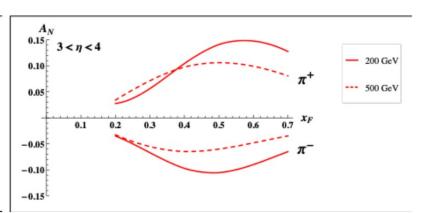
p+p 510 GeV up to η ~4.2 probe down to x~2 × 10⁻³ (gluons) and up to x~0.5 (valence quarks)

Forward upgrades will be ready for Run-22 First p+p run with BES-II upgrade detectors

Inclusive transverse single spin asymmetries at forward

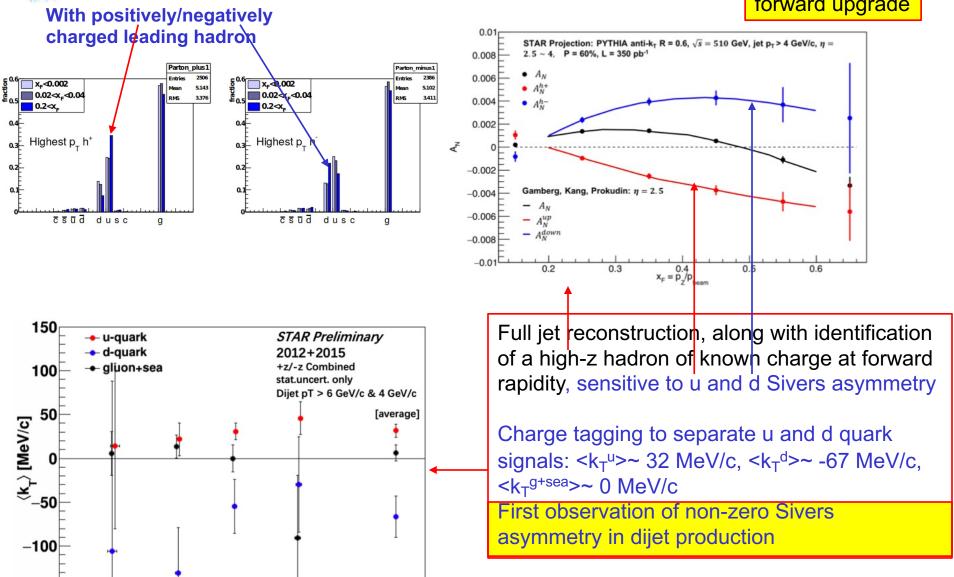
Interplay of


Initial state: Sivers distribution or its twist-3 analog, the Efremov-Teryaev-Qiu-Sterman (ETQS) function

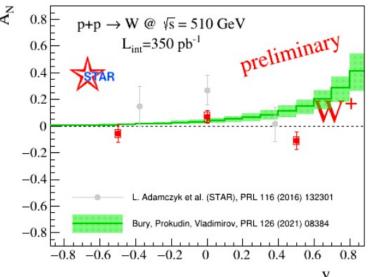

and/or

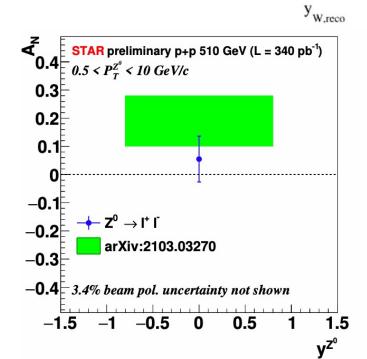
Final state: fragmentation of polarized quarks, Collins function or related twist-3 function H_{FII}

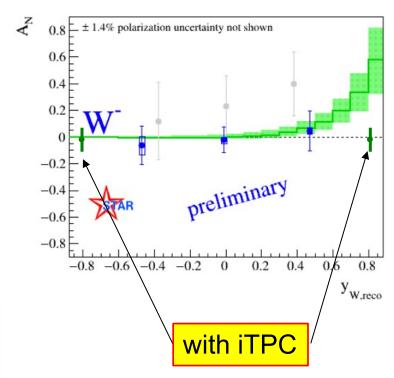
 A_N for h^{\pm} , direct γ and π^0 :constrain the evolution and flavor dependence of ETQS distribution and determine the role of H_{FU}



-150₄


 $\boldsymbol{\eta^{\text{total}}}$

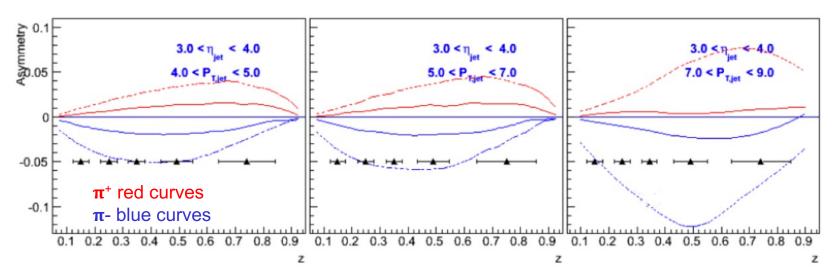

Sivers and ETQS function


forward upgrade

Sivers effect

Run-22 will reduce red and blue uncertainties by 1.5

W/Z A_N provides important input for


- Confirmation of Sivers effect sign change
- Magnitude of TMD evolution

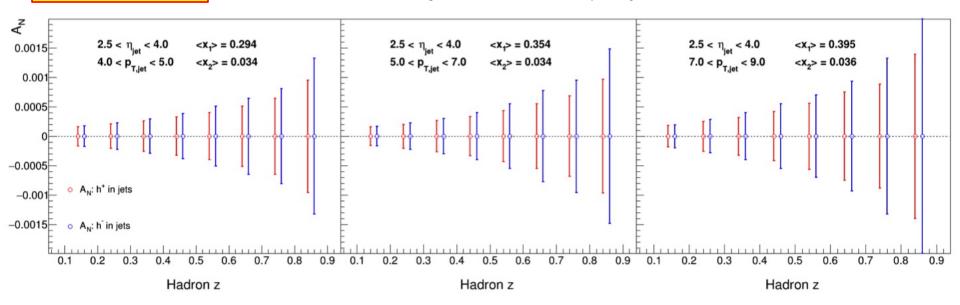
Collins effect at large x

forward upgrade

h in jets at forward rapidity

Extending Collins asymmetry measurements to the forward direction allows access to transversity at x>0.3.

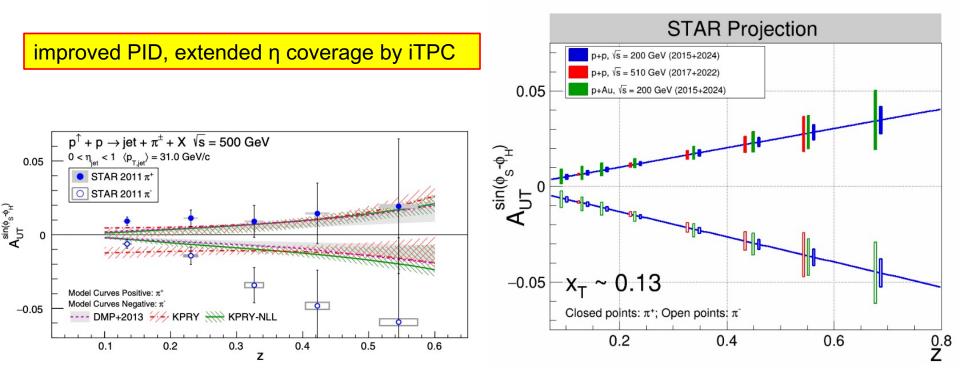
Transversity at 0.3<x<0.5, never explored by SIDIS


Perform high precision "Collins-like" asymmetry measurement to access the distribution of linear polarized gluon down to $x\sim0.005$.

Collins effect at large x

forward upgrade

h in jets at forward rapidity


Extending Collins asymmetry measurements to the forward direction allows access to transversity at x>0.3.

Transversity at 0.3<x<0.5, never explored by SIDIS

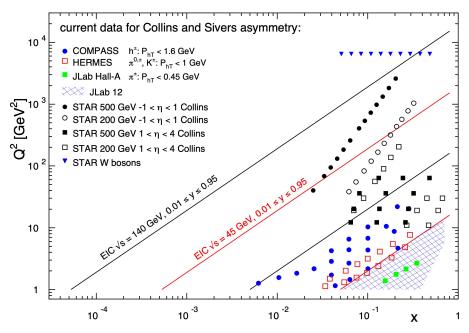
Perform high precision "Collins-like" asymmetry measurement to access the distribution of linear polarized gluon down to $x\sim0.005$.

Collins asymmetry: π^{\pm} in jets at mid-rapidity

Multi-differential (p_T , η , z, j_T , Q^2) precise Collins asymmetry measurements at mid-rapidity will probe TMD factorization, universality, and evolution.

• Similar x coverage but much larger Q² compared to SIDIS measurements

Plans for Run-24


$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$10{ m B}\ /\ 31\ { m nb^{-1}}$	2023
200	pp	$235 \; { m pb}^{-1}$	2024
200	$p{+}\mathrm{Au}$	$1.3 \; \mathrm{pb^{-1}}$	2024
200	Au+Au	$10{ m B}~/~31~{ m nb^{-1}}$	2025

- 2 (3) times the total luminosity in Run-15 p+p (p+Au)
- 4.5 (3) times the transverse lumi. in Run-15

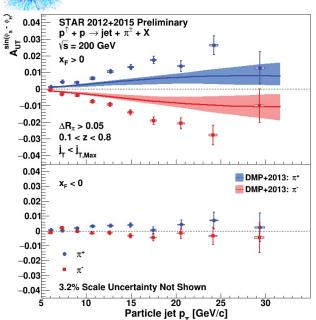
11 weeks each

Transversely polarized pp and p+Au with equal nucleon-nucleon luminosities essential to optimize several critical measurements

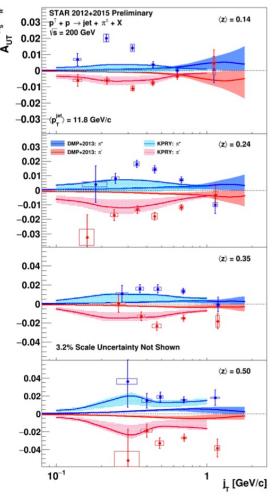
Kinematic coverage for Collins and Sivers Asymmetry STAR covers 0.005<x<0.5

Lijuan Ruan, BNL

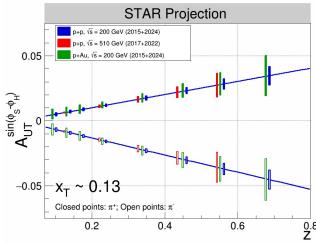
Physics Opportunities in 2024


Central role played by 200 GeV pp:

- In most cases, similar measurements will be performed with 510 GeV and 200 GeV pp
- Very wide x coverage (0.005 < x < 0.5) by combining 200 and 510 GeV pp
 - 510 (200) GeV pp with the Forward Upgrade provides access to the lowest (highest) x
 value with jets and hadrons in jets over a wide range of perturbative scales
 - 200 GeV pp provides best coverage for the intermediate x range
 - provides best overlap with the x-Q² coverage of EIC
- Overlapping x coverage enables detailed evolution studies
- 200 GeV pp critical for precise factorization and universality tests
 - Best statistical precision for much of the kinematics overlapping with EIC
- 200 GeV pp essential baseline for 200 GeV p+Au
 - Must investigate gluon saturation in both pA and eA to verify universality
 - Precise probe of the quark-gluon structure of heavy nuclei
 - Explore the propagation and hadronization of colored partons


Must measure non-perturbative part of TMD experimentally!

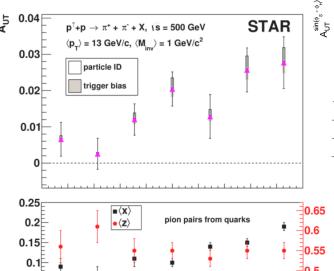
Example: mid-rapidity Collins effect at 200 vs 510 GeV



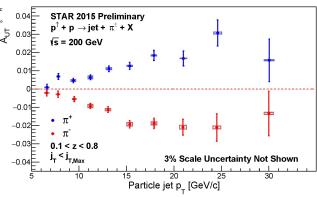
 A_{UT} vs jet (p_T, η) measures the collinear transversity distribution

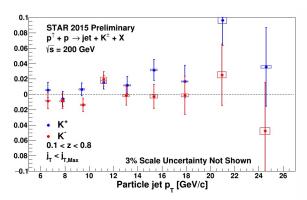
A_{UT} vs hadron (z,j_T) maps the Collins fragmentation function

 Run-24 will reduce these uncertainties at 200 GeV by a factor of 2.5, enabling the most sensitive universality test with EIC data



Precision measurements at both energies probe TMD evolution and provide important cross-checks and essential x-Q² overlap with EIC


A_{UT} in p+Au: an alternative universality test and a unique look at spindependent hadronization

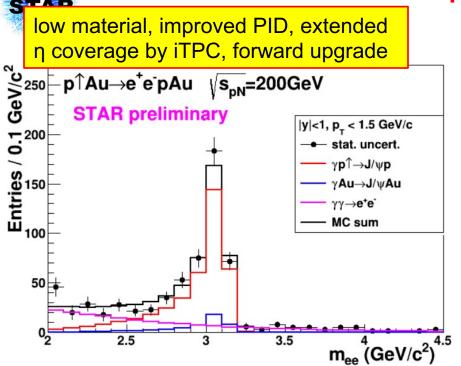

iTPC in mid-rapidity IFF and Collins: η dependence and PID

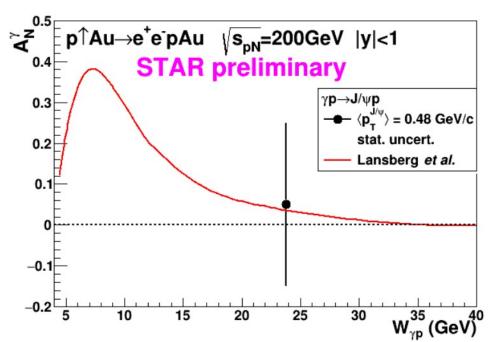
STAR 2015 Collins, preliminary

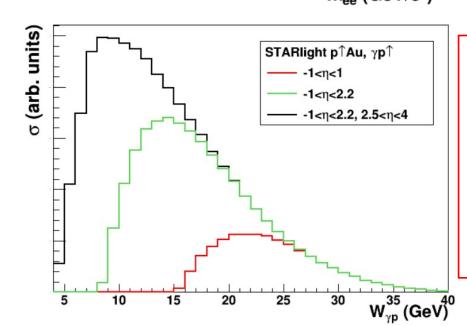
- Different Collins and IFF asymmetries for different particle types
 - K⁺ about 1.5-sigma larger than π⁺ (note diff vert scales)
 - K⁻ (and p/pbar in backup) consistent with zero in 2015
 - Similar π/K behavior seen in SIDIS
- Particle identification essential to maximize impact
- iTPC increases FoM by improving dE/dx resolution
- Propose to take 4.5 times the 2015 luminosity, but
 - Pion uncertainties will drop by $1/\sqrt{5.4}$
 - Kaon and proton uncertainties will drop by $1/\sqrt{9}$ (!)

Forward η increases:

-0.8 -0.6 -0.4 -0.2 0

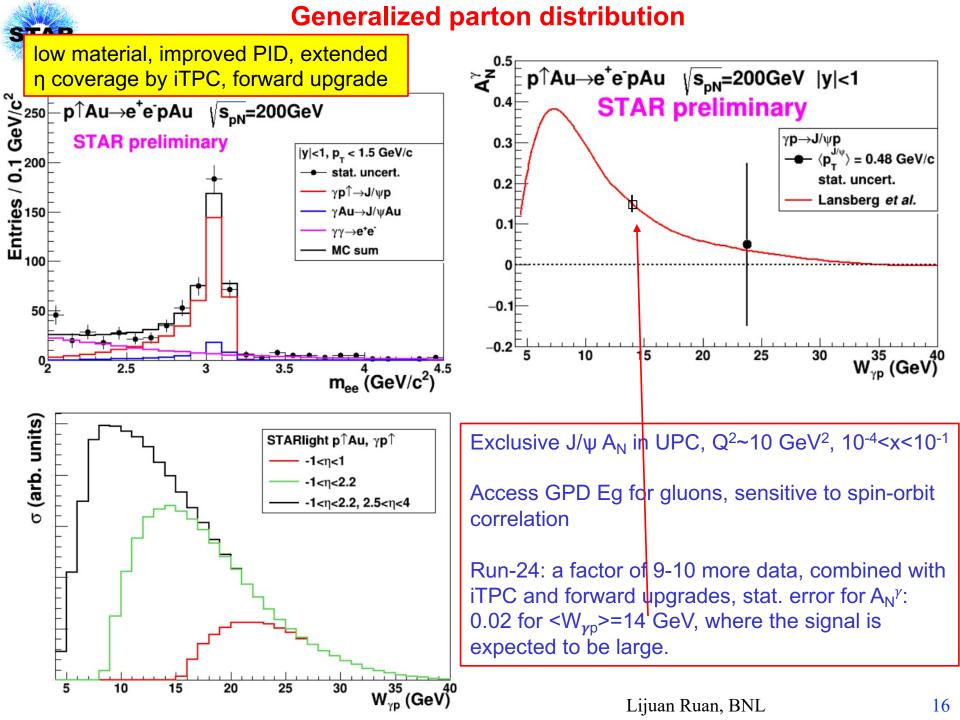

- Quark fraction (no gluon transversity)
- <x>

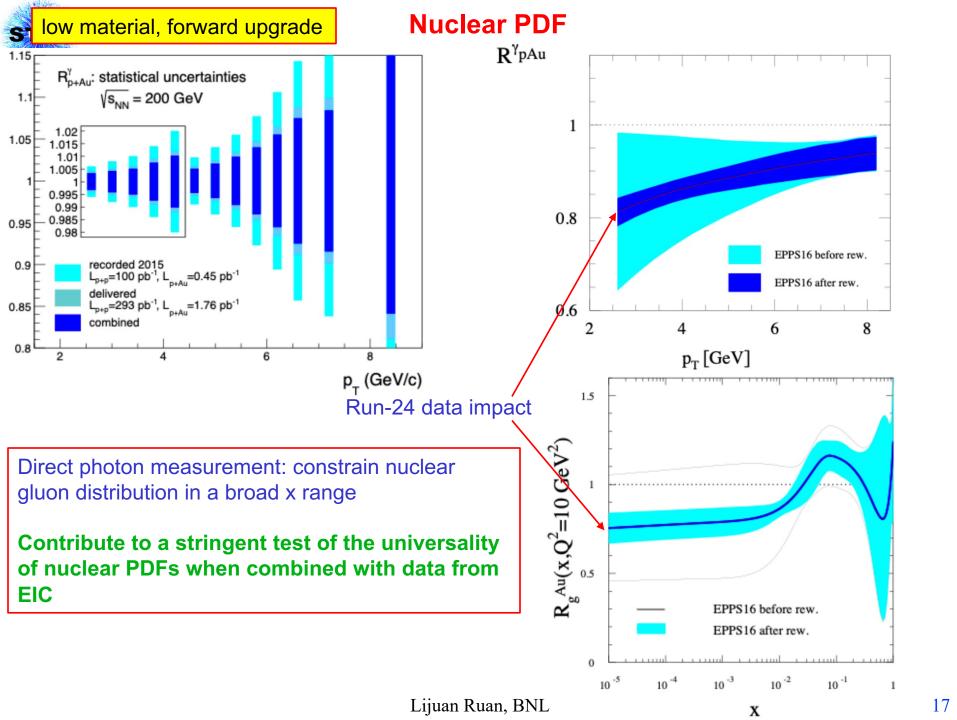

0.05


 Polarization transfer in hard scattering

iTPC will add coverage of $1 < |\eta| < 1.5$ for both IFF and Collins asymmetries

Generalized parton distribution

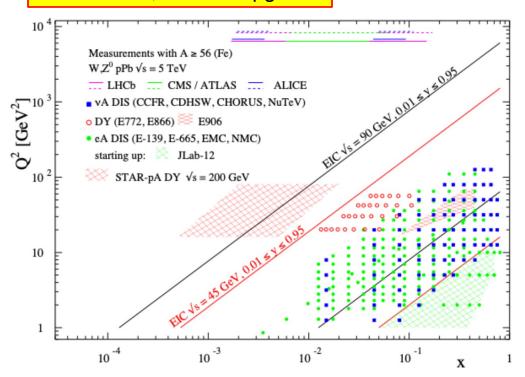




Exclusive J/ ψ A_N in UPC, Q²~10 GeV², 10⁻⁴<x<10⁻¹

Access GPD Eg for gluons, sensitive to spin-orbit correlation

Run-24: a factor of 9-10 more data, combined with iTPC and forward upgrades, stat. error for A_N^{γ} : 0.02 for $< W_{\gamma p} > = 14$ GeV, where the signal is expected to be large.



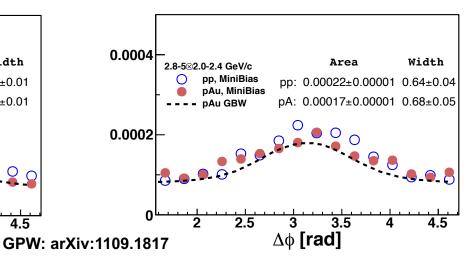
Nuclear PDF

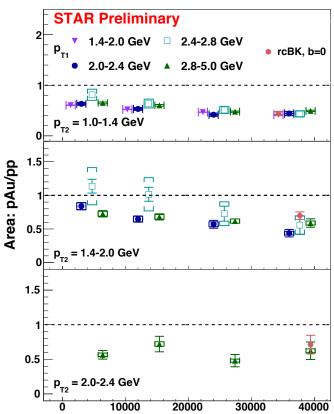
STAR

low material, forward upgrade

Small DY cross section (10⁻⁶-10⁻⁵ of hadron): need suppress hadron to the order of 0.1% while maintaining a decent electron efficiency


With forward upgrades: hadron rejection power: 200-2000 for hadrons of 15-50 GeV electron efficiency: 80%


Drell-Yan: constrain nuclear sea quark distribution in a broad x range

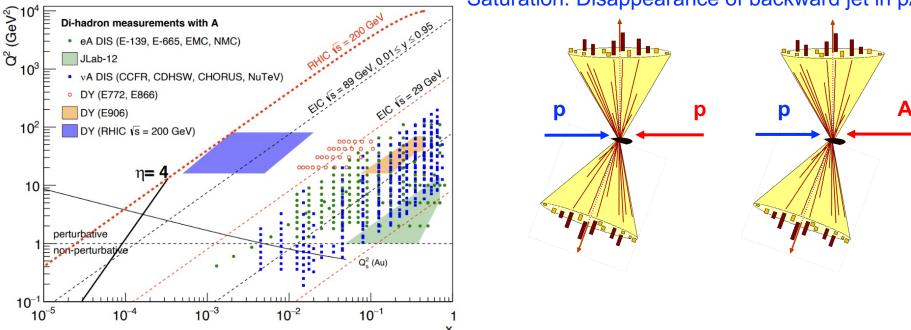

Essential in testing fundamental universality properties of nPDFs combined with data from EIC

QCD non-linear effects

BBC East Sum ADC

rcBK: arXiv:1805.05711

Run-15 di- π^0 correlation:

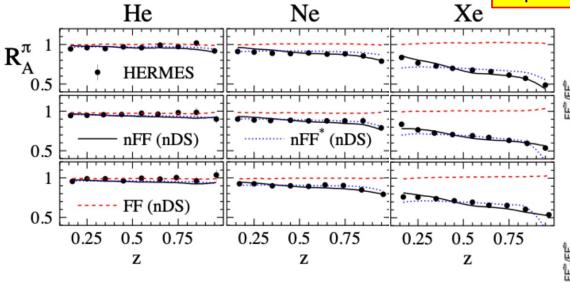

away side area suppressed significantly, while the pedestal and away side widths change very little.

probe x down to 10⁻³

QCD non-linear effects

counting experiment of Di-jets in pp and pA Saturation: Disappearance of backward jet in pA

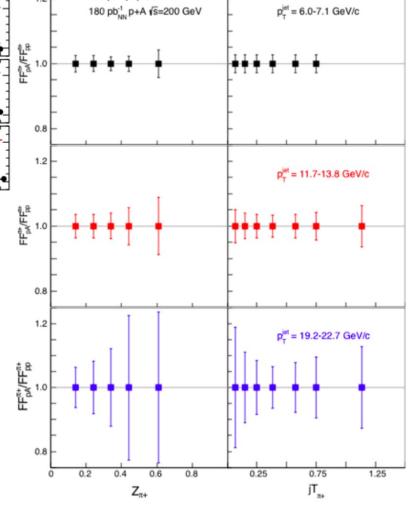
Forward rapidities at STAR provide an absolutely unique opportunity to have very high gluon densities


→ proton – Au collisions combined with an unambiguous observable

STAR forward upgrade characterize non-linear effects with charged di-hadrons, γ-jet, di-jet

Nuclear FF

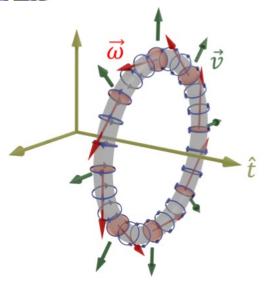
360 pb.1 p+p vs=200 GeV

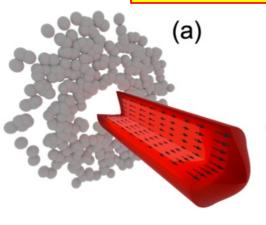


Modified FF is needed to explain SIDIS data by HERMES

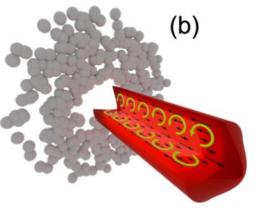
Underlying mechanism is not understood

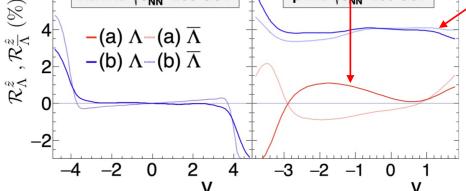
Universality has not been tested


Run-24: study pion, kaon, and proton FF modification, constrain gluon FF.



RHIC is in the ideal kinematic region to measure nuclear effects compare to LHC


Novel QGP droplet substructure: toroidal vorticity


Bjorken flow profile

Toroidal vortex structure:

Smoke ring

6 Au+Au \(\s_{NN} = 200 \) GeV p+Au \(\s_{NN} = 200 \) GeV

Radial-gradient flow profile

Ring structure

$$\overline{\mathcal{R}}^z_{\Lambda} \equiv \left\langle rac{ec{S}'_{\Lambda} \cdot (\hat{z} imes ec{p}'_{\Lambda})}{|\hat{z} imes ec{p}'_{\Lambda}|}
ight
angle$$

300 M p+Au central events at each field polarity: enable us to measure $\overline{\mathcal{R}}^z_{\Lambda}$ ~1% with 7 σ significance

A unique opportunity to discover a novel vortical configuration in the subatomic fluid

Summary of 2022 and 2024

200 and 510 GeV pp:

- Very wide x coverage (0.005 < x < 0.5) by combining 200 and 510 GeV pp
 - 510 (200) GeV pp with the Forward Upgrade provides access to the lowest (highest) x
 value with jets and hadrons in jets over a wide range of perturbative scales
 - 200 GeV pp provides best coverage for the intermediate x range
 - provides best overlap with the x- Q^2 coverage of EIC
- Overlapping x coverage enables detailed evolution studies
- 200 GeV pp critical for precise factorization and universality tests
 - Best statistical precision for much of the kinematics overlapping with EIC
- 200 GeV pp essential baseline for 200 GeV p+Au

200 GeV p+Au:

- Gluon saturation in both pA and eA to verify universality
- Precise probe of quark-gluon structure of heavy nuclei
- Explore the propagation and hadronization of colored partons
- A unique opportunity to discover toroidal vorticity

Equal nucleon-nucleon luminosities in pp and pAu in Run-24 essential to optimize several critical measurements

Fully utilize forward upgrades and excellent PID over extended n coverage

STAR detector and Au+Au data sets

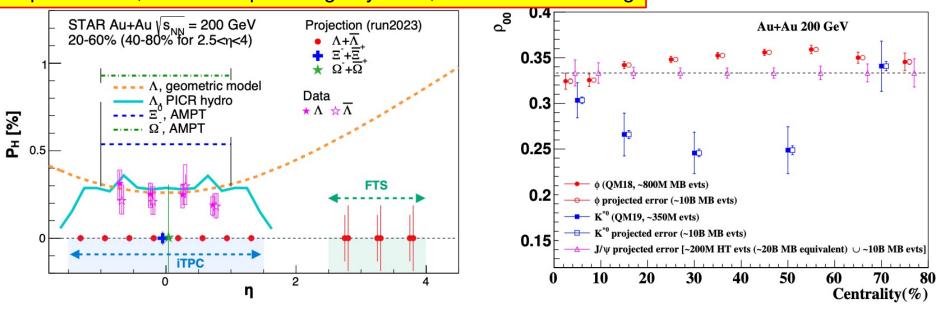
Low material, PID capability over extended η and p_T , improved trigger capability forward π^0 , γ , e, Λ , charged hadron, jets

24 weeks data taking for Run-23 and 25 each

minimum bias		high- p_T int. luminosity $[nb^{-1}]$				
y	ear	$[\times 10^9 \text{ events}]$	all vz	vz < 70cm	vz <30cm	
2	2014	9	27	19	16	TDC+TOE+UET+MTD
2	2016	2	21	19	10	TPC+TOF+HFT+MTD
2	023	20	63	56	38	iTPC+EPD+eTOF+TOF +MTD
2	025	20	บอ	50	30	Forward upgrades

A factor of 10 more minimum bias data compare to Run-14 + Run-16 A factor of 2.3 more luminosity for high-p_T trigger

Physics Opportunities for 2023+2025

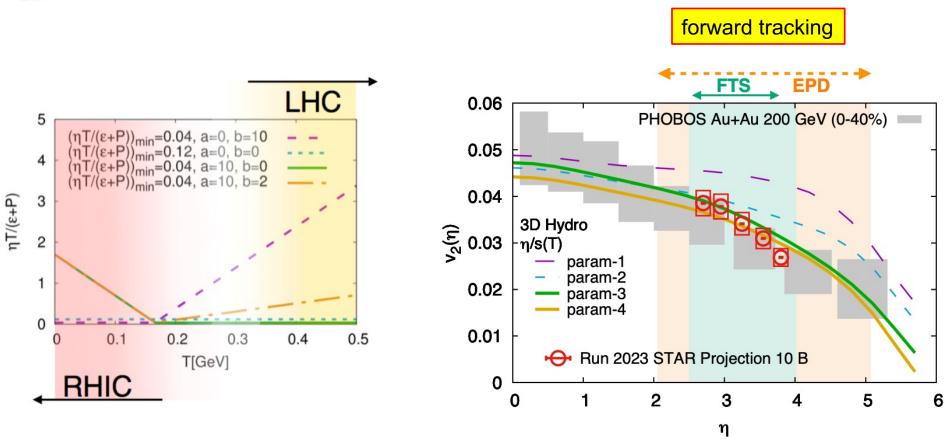

To address important questions about the inner workings of the QGP

- What is the precise temperature dependence of shear and bulk viscosity? v_n as a function of η
- What is the nature of the 3-dimensional initial state at RHIC energies? r_n over a wide rapidity
- How is global vorticity transferred to the spin angular momentum of particles on such short time scales? How can the global polarization of hyperons be reconciled with the spin alignment of vector mesons? Λ, Ξ, Ω P_H and ρ_{00} of K*, φ , J/ ψ
- What is the precise nature of the transition near μ_B=0? Net-proton C₆/C₂
- What is the electrical conductivity, and what are the chiral properties of the medium?
- What can be learned about confinement and thermalization in a QGP from charmonium measurement? J/ ψ v₂ and v₁, ψ (2S)
- What are the underlying mechanisms of jet quenching at RHIC energies? What do jet probes tell us about the microscopic structure of the QGP as a function of resolution scale? $\gamma_{\rm dir}$ +jet $I_{\rm AA}$, $\gamma_{\rm dir}$ +jet acoplanarity, jet substructure

Global vorticity transfer

improved PID, extended n coverage by iTPC, and forward tracking

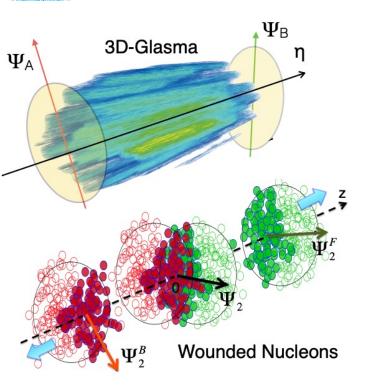
How exactly the global vorticity is dynamically transferred to fluid? How does the local thermal vorticity of the fluid gets transferred to the spin angular momentum?


Rapidity dependence of Λ , Ξ , Ω P_H at STAR, probe the nature of global vorticity transfer: Initial geometry and local thermal vorticity + hydro predict opposite trends.

Can we reconcile P_H with vector meson spin alignment ρ_{00} ? Strong force field effect?

Precise measurements of ρ_{00} of K*, ϕ , J/ ψ will tell.

Constrain temperature dependence of η /s



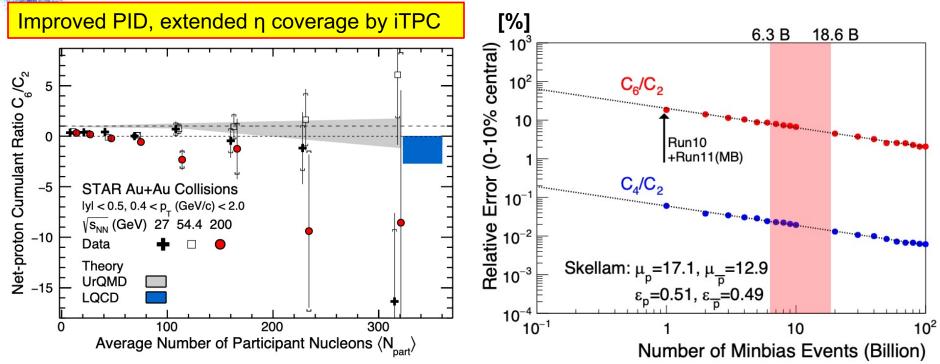
Flow measurements at forward rapidity sensitive to η /s as a function of T.

Much more precise than previous PHOBOS measurements.

Constrain longitudinal structure of initial state

$$r_n(\eta_a, \eta_b) = V_{n\Delta}(-\eta_a, \eta_b)/V_{n\Delta}(\eta_a, \eta_b)$$

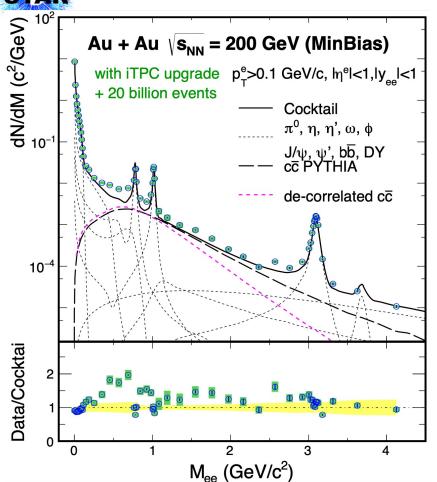
 $V_{n\Delta}$ the Fourier coefficient calculated with pairs of particles in different rapidity regions

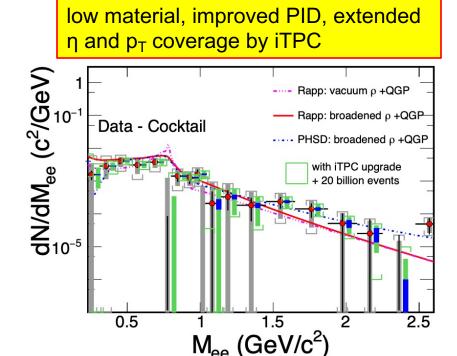

r_n sensitive to different initial state inputs:

- 3D glasma model: weaker decorrelation, describes CMS r₂ but not r₃
- Wounded nucleon model: stronger decorrelation than data

Precise measurement of r_n over a wide rapidity window will provide a stringent constraint

Chiral cross-over transition



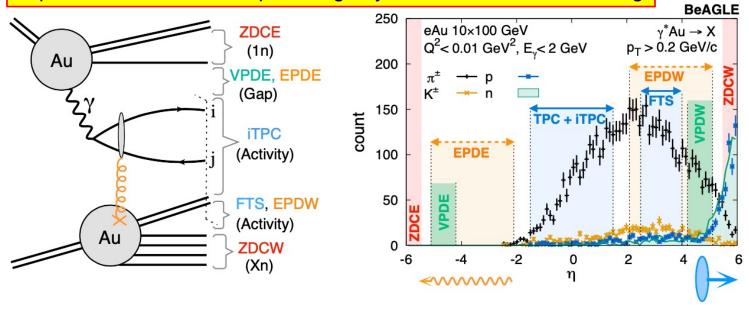

Lattice QCD predicts a sign change of susceptibility ratio χ_6^B/χ_2^B at T_C The cumulants of net-proton distribution sensitive to chiral cross over transition at μ_B =0

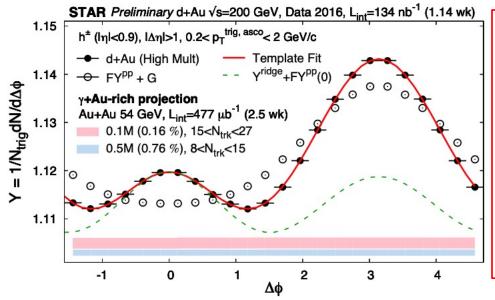
Observed a hint of a sign change from peripheral to central collisions at 200 GeV $C_6/C_2 < 0$ at central collisions

High statistics measurements (10% statistical error for C_6/C_2 in central) will pin down the sign change

Chiral property

Low-mass dielectron measurement: lifetime indicator and provide a stringent constraint for theorists to establish chiral symmetry restoration at μ_B =0

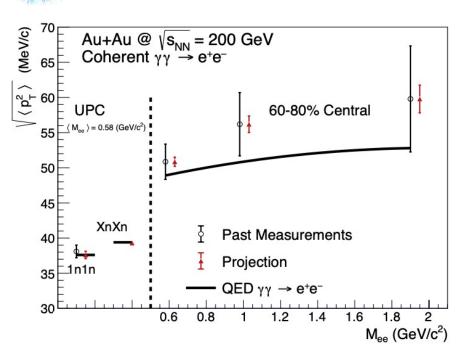

Intermediate mass: direct thermometer to measure temperature


Enable dielectron v_2 and polarization, and solve direct photon puzzle (STAR vs PHENIX)

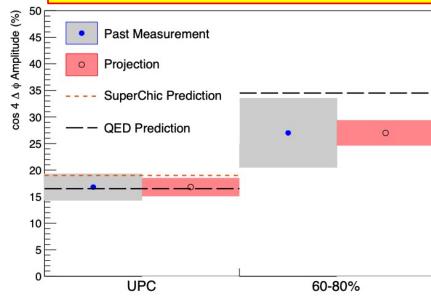
Search for collectivity in photo-nuclear processes

improved PID, extended η coverage by iTPC, and forward tracking

 γ +Au process in UPC associated with a large rapidity asymmetry:


- Search for collectivity
- Study bulk observables

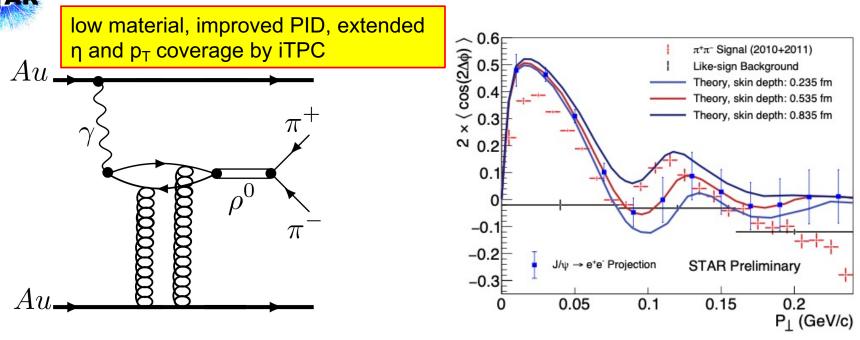
Further understand the origin of collectivity observed in small systems


Run23+25: errors will be reduced by a factor of 17

Photon Wigner function and magnetic effects in QGP

low material, improved PID, extended η and p_T coverage by iTPC

Impact parameter dependence of transverse momentum distribution of EM production is the key component to describe data;


p_T broadening and azimuthal correlations of e⁺e⁻ pairs sensitive to electro-magnetic (EM) field.

Is there a sensitivity to final magnetic field in QGP?

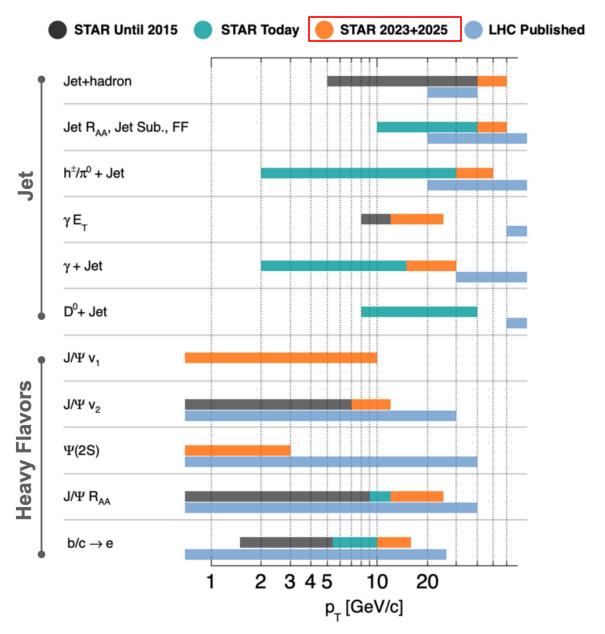
Precise measurement of p_T broadening and angular correlation will tell at >3 σ for each observable.

Fundamentally important and unique input to CME phenomenon.

Gluon distribution inside nucleus

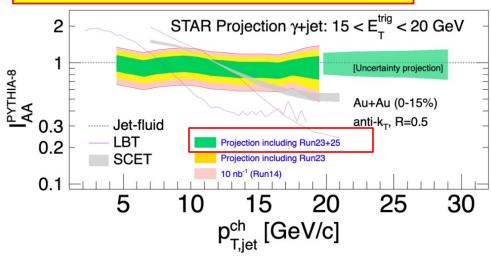
Significant cos2 $\Delta \varphi$ azimuthal modulation in $\pi^+\pi^-$ pairs from photonuclear ρ^0 and continuum Modulation vs. p_T , shows a diffractive pattern structure

Theory (linear polarized photon + saturated gluons), sensitive to nuclear geometry and gluon distribution, closest to the gluon 3D tomography at EIC


Run23+25:

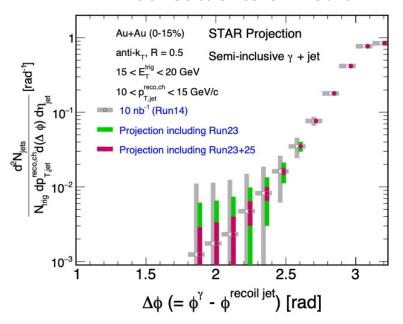
multi-differential measurements (vs. mass, rapidity, p_T): provide strong theoretical constraints, separate ρ^0 from continuum (Drell-Soding), investigate how double-slit interference mechanism affects the structure

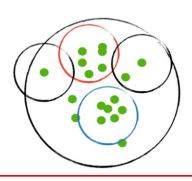
Enable a similar measurement for J/ψ , a cleaner probe for gluon spatial distribution


Hard probes: jets and heavy flavor

Jet quenching

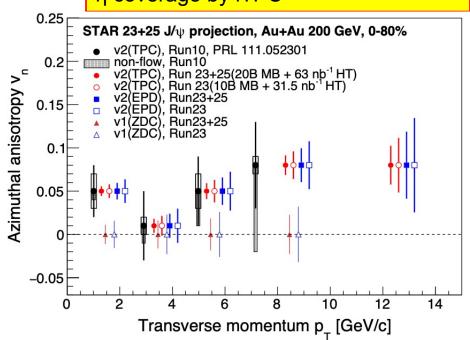
γ_{dir} +jet acoplanarity: constituents of medium

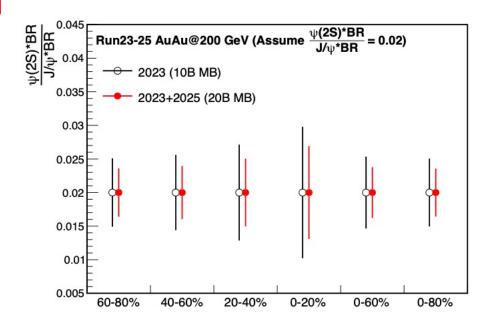



Semi-inclusive γ_{dir} +jet suppression

improved opening angle resolution by a factor of 4

Jet substructure: coherence vs. de-coherence




Red: leading sub-jet Blue: sub-leading sub-jet $Z_{SJ}=p_T^{blue}/(p_T^{blue}+p_T^{red})$ $\theta_{SJ}=\Delta R(blue,red)$

Deconfinement and thermalization

low material, improved PID, extended η coverage by iTPC

J/ψ: interplay of color-screening and recombination, signature of deconfinement

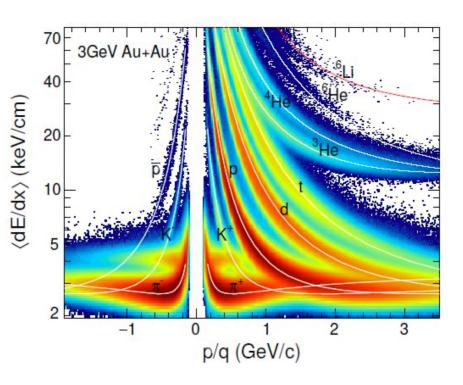
- low p_T v₂: recombination
- v₁: initial tilt of the bulk medium

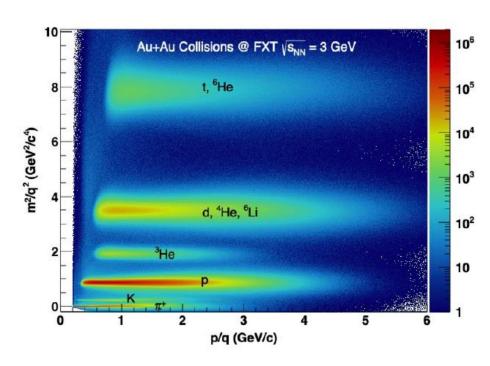
 $\psi(2S)$ suppression: explore temperature profile of the medium

Summary of 2023-2025

STAR is in an excellent position to address important questions about the inner workings of the QGP

- What is the precise temperature dependence of shear and bulk viscosity? v_n as a function of η
- What is the nature of the 3-dimensional initial state at RHIC energies? r_n over a wide rapidity
- How is global vorticity transferred to the spin angular momentum of particles on such short time scales? How can the global polarization of hyperons be reconciled with the spin alignment of vector mesons? Λ , Ξ , Ω P_H and ρ_{00} of K^* , φ , J/ψ
- What is the precise nature of the transition near μ_B=0? Net-proton C₆/C₂
- What is the electrical conductivity, and what are the chiral properties of the medium? Dielectron
- What can be learned about confinement and thermalization in a QGP from charmonium measurement? $J/\psi v_2$ and v_1 , $\psi(2S)$
- What are the underlying mechanisms of jet quenching at RHIC energies? What do jet probes tell us about the microscopic structure of the QGP as a function of resolution scale? $\gamma_{\rm dir}$ +jet $I_{\rm AA}$, $\gamma_{\rm dir}$ +jet acoplanarity, jet substructure

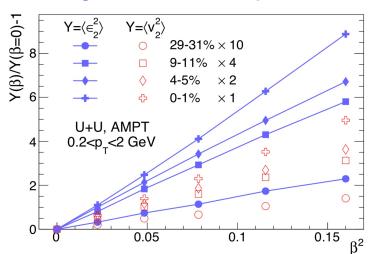

Proposed measurements based on our detector performances in past years and/or forward capabilities.

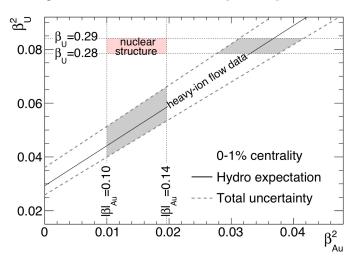


Future opportunity I

Light fragment yields from He, Si, and Fe on C, Al, and Fe targets with beam energies from 3 to 50 GeV

- The Space Radiation Protection community has identified 3-50 GeV/n region as an area of need. https://doi.org/10.3389/fphy.2020.565954
- STAR has excellent light fragment capabilities.
- RHIC can deliver the ion beam species (He, Si, Fe) and energies (3-50 GeV/n) of need to the Space Radiation Protection community. STAR can install the targets of interest (C, Al, Fe)




Future opportunity II

Shape tomography of atomic nuclei using collective flow measurements

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi)/a}} \qquad R(\theta,\phi) = R_0 \left(1 + \beta_2 \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \beta_3 Y_{3,0} + \beta_4 Y_{4,0}\right)$$

- Collective flow measurements sensitive to nuclear deformation
- Understanding of the nuclear shape of current available systems not ideal: impact η/s extraction

Step1: calibrate systematics using two species around ¹⁹⁷Au: ²⁰⁸Pb & ¹⁹⁸Hg (β₂=-0.11) at 200 GeV Pb: control on effects of Au deformation; precision on initial state and pre-equilibrium dynamics (energy dependence) vs. LHC Hg: two systems with known β₂ can triangulate the consistency of β_{2Au}.

Constrain η/s with improved understanding of initial state.

Step2: explore more exotic regions for triaxiality and octuple

Scan an isotopic chain: 144 Sm (β_2 =0.08), 148 Sm (β_2 =0.14,triaxial), 154 Sm (β_2 =0.34)

■ large octuple expected/predicted for Z~56/N~88; compare 154 Sm (β_2 = 0.34) with 154 Gd (β_2 = 0.31)

Use hydrodynamics and flow measurements to perform precision cross-check of low energy nuclear physics.

A shorter run scenario

Run-22: 18 cryo-weeks

- Detrimental to STAR achieving all our physics goals.
- Need commission forward detectors
- Results in more than 15% reduction in sampled luminosity

Runs 23-25: 20 cryo-weeks each

Data taking: 29 weeks Au+Au 10 weeks pp 10 weeks p+Au

$\sqrt{s_{ m NN}}$	Species	Number Events/
$\sqrt{s_{ m NN}}$ (GeV)		Sampled Luminosity
200	Au+Au	$12{ m B} \ / \ 37 \ { m nb^{-1}}$
200	pp	$214 \; { m pb^{-1}}$
200	$p{+}\mathrm{Au}$	$1.2 \; { m pb^{-1}}$

Equal nucleon-nucleon luminosities in pp and p+Au essential to optimize several critical measurements

Very detrimentally impact the following physics programs: Hard probes, thermal di-lepton, photon-induced di-lepton and J/ψ in Au+Au Nuclear PDFs, fragmentation functions, and gluon saturation measurements

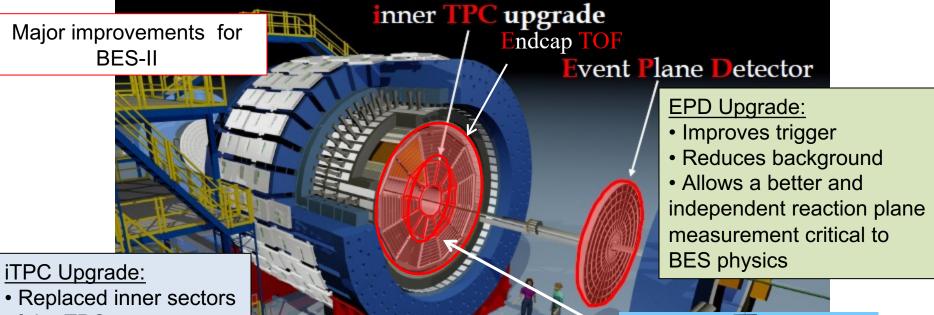
Summary

 quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton-proton collisions for initial and final state TMDs

Test of Sivers non-universality: Sivers_{SiDIS} = -- Sivers_{DY, W+/-,ZO}

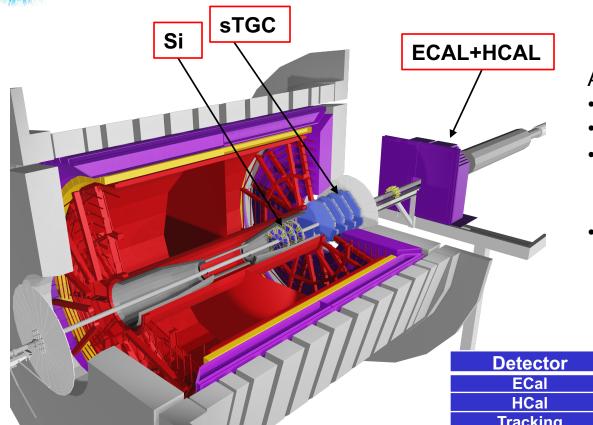
- > Requirement:
 - large data sets √s = 200 and 500 GeV p[↑]p
 low to high x, highest and lowest x with fSTAR
 - \rightarrow A_{UT} for W^{+/-} Z⁰, A_{UT} for hadrons in jet
- ☐ First look Gluon GPD → E_g
 - **□** Requirement:
 - \rightarrow data sets $\sqrt{s} = 500 \text{ GeV p}^{\uparrow}\text{p}$ and $\sqrt{s} = 200 \text{ GeV p}^{\uparrow}\text{A}$
 - > A_{UT} for J/ψ in UPC
- Physics driving the large A_N at forward rapidities and high x_F
 - Requirement:
 - large data sets √s = 200 and 500 GeV p[↑]p
 - \rightarrow low to highest $x_F \rightarrow$ fSTAR
 - > charge hadron A_N at forward rapidities
- Nuclear dependence of PDFs, FF, and TMDs
- Requirement:
 - ► large equal data set of $\sqrt{s} = 200 \text{ p}^{\uparrow}\text{p}$ and \sqrt{p}
 - → low to high x, highest and lowest x with fSTAR
 - R_{pA} direct photons and DY, hadrons in jet A_{UT}
- non-linear effects in QCD
- Requirement:
 - ► large equal data set of $\sqrt{s} = 200 \text{ p}^{\uparrow}\text{p}$ and $\sqrt{p}^{\uparrow}\text{Au}$
 - → lowest-x through fSTAR
 - \triangleright dihadron correlations for h^{+/-}, γ-jet, di-jets

To address important questions about the inner workings of the QGP


- What is the precise temperature dependence of shear and bulk viscosity? v_n as a function of η
- What is the nature of the 3-dimensional initial state at RHIC energies? r_n over a wide rapidity
- How is global vorticity transferred to the spin angular momentum of particles on such short time scales? How can the global polarization of hyperons be reconciled with the spin alignment of vector mesons? Λ , Ξ , Ω P_H and ρ_{00} of K^* , φ , J/ψ
- What is the precise nature of the transition near μ_B=0? Net-proton C₆/C₂
- What is the electrical conductivity, and what are the chiral properties of the medium? Dielectron
- What can be learned about confinement and thermalization in a QGP from charmonium measurement? J/ψ v₂ and v₁, ψ(2S)
- What are the underlying mechanisms of jet quenching at RHIC energies? What do jet probes tell us about the microscopic structure of the QGP as a function of resolution scale? $\gamma_{\rm dir}$ +jet $I_{\rm AA}$, $\gamma_{\rm dir}$ +jet acoplanarity, jet substructure

Backup

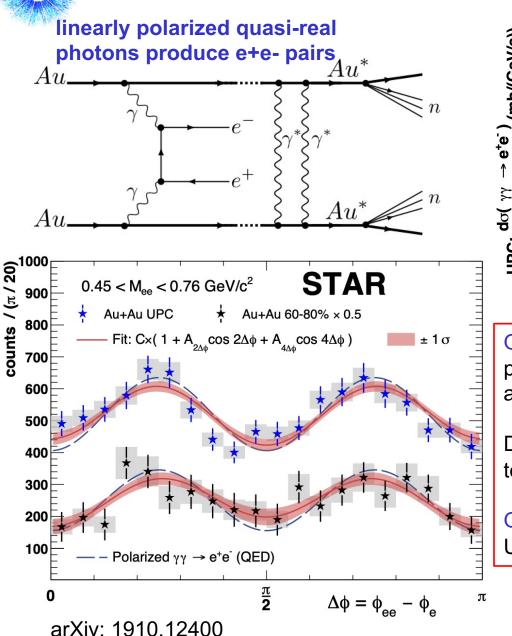
STAR detector at BESII

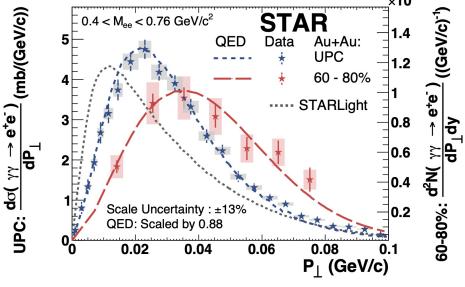

- of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut from 125 MeV/c to 60 MeV/c

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at $\eta = 1$ to 1.5
- Improves the fixed target program
- Provided by CBM-FAIR

STAR forward upgrades

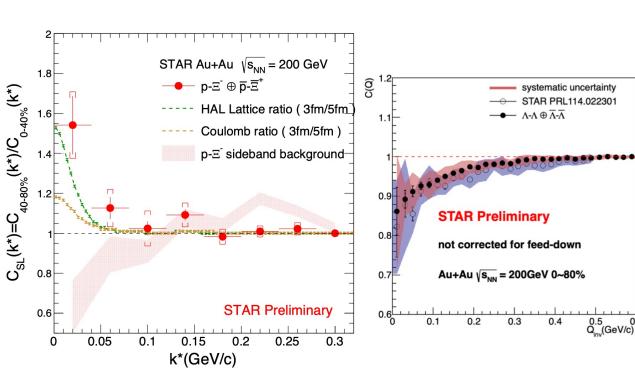


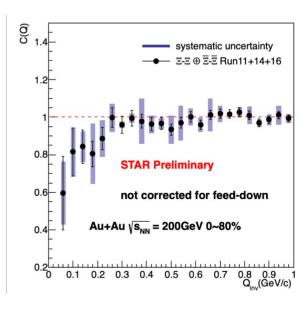

At 2.5<η<4

- Jets
- PID (π⁰, γ, e, Λ)
- charged particle momentum resolution 20-30% at 0.2<p_T<2 GeV/c
- event-plane reconstruction and trigger capability

Detector	pp and pA	AA			
ECal	~10%/√E	~20%/√E			
HCal	~50%/√E+10%				
Tracking	charge separation	0.2 <p<sub>T<2 GeV/c</p<sub>			
	nhatan cunnraccion	with 20 30% 1/n			

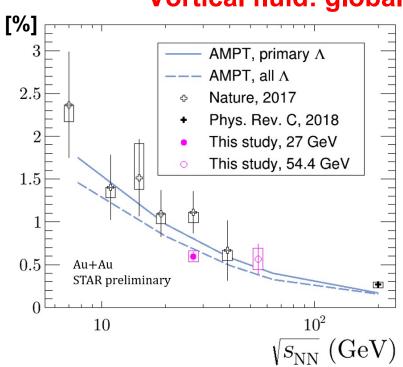
Discoveries of Breit-Wheeler process and vacuum birefringence

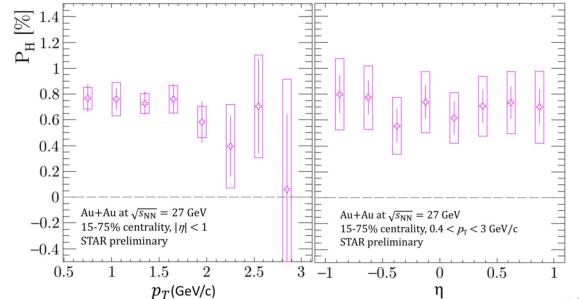

Observation of Breit-Wheeler process with all possible kinematic distributions (yields, M_{ee}, p_T, angle)


Dielectron p_T spectrum: broadened from large to small impact parameters

Observation of vacuum birefringence: 6.7σ in **UPC**

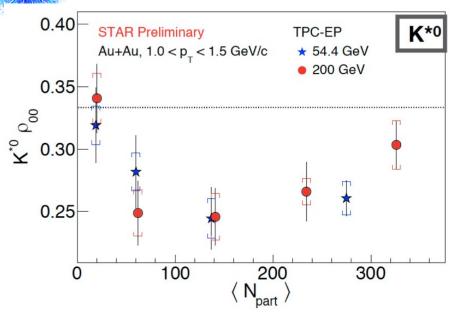
Strong interactions

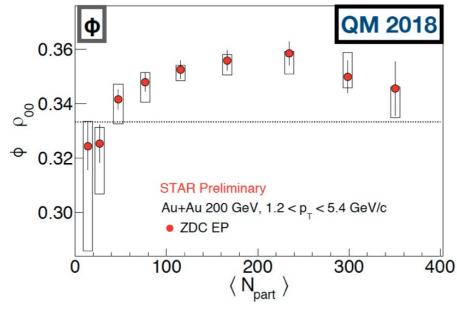



Constrain hyperon-nucleon and hyperon-hyperon interactions, important for the study exotic hadronic states and understanding of the EoS of neutron stars

- A factor of 7 more data in Runs 23 and 25
- Systematic uncertainties will be significantly reduced.

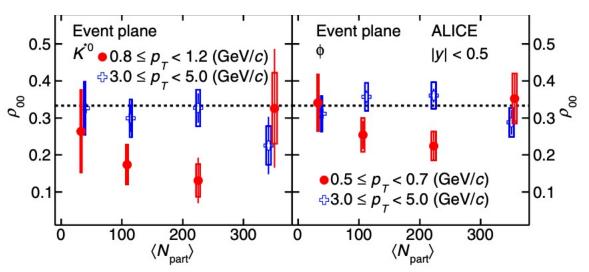
Vortical fluid: global vorticity transfer


Λ Global polarization: strong energy dependence



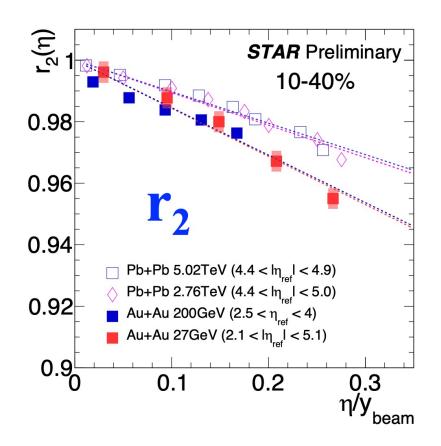
Weak p_T and η dependence

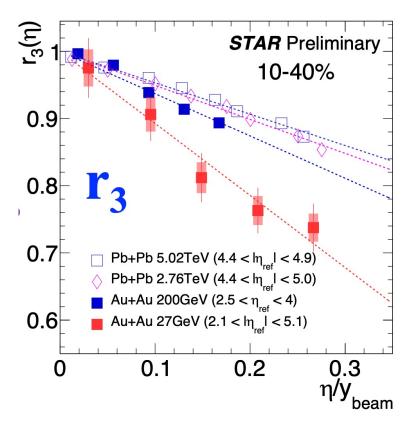
Vortical fluid: global vorticity transfer



Vector meson spin alignment ρ_{00} from STAR

>1/3 for φ <1/3 for K*


Can we reconcile P_H with vector meson spin alignment ρ_{00} ?


Strong vector meson field?

De-correlation in 27 and 200 GeV Au+Au

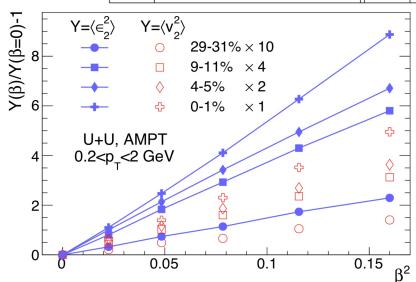
200 GeV AuAu in 2023-2025

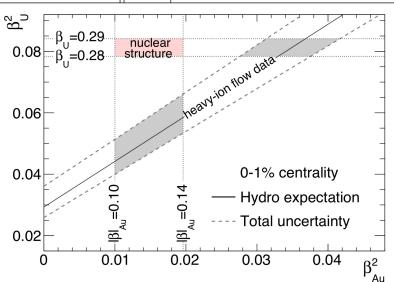
STAR is in a unique position to measure

- v_n vs. η at forward
- Decorrelation vs. η up to forward
- Net-proton C₆/C₂
- Dielectron
- γγ → e⁺e⁻
- $\gamma p \rightarrow \rho X \rightarrow \pi^{+}\pi^{-} X$ and $\gamma p \rightarrow J/\psi X \rightarrow e^{+}e^{-} X$
- Parton energy loss for jets of varying topologies selected via substructure

Future opportunity II

Shape tomography of atomic nuclei using collective flow measurements


$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi)/a)}}$$


$$R(\theta,\phi) = R_0 \left(1 + \beta_2 \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \beta_3 Y_{3,0} + \beta_4 Y_{4,0}\right)$$

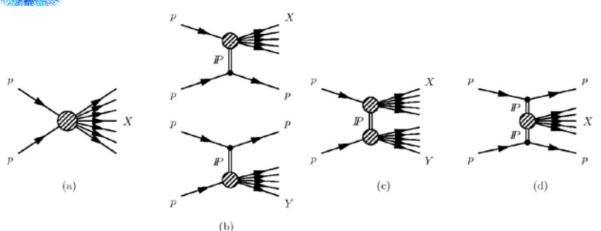
- Collective flow measurements sensitive to nuclear deformation
- Understanding of the nuclear shape of current available systems not ideal: impact η/s

4	4.1	
OVTr	3 ~ † I	\mathbf{n}
extra	16.0	
-		•

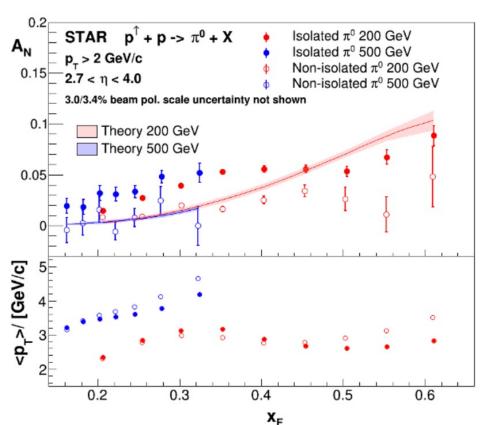
	eta_2	eta_3	eta_4		eta_2	eta_3	β_4		eta_2	β_3	eta_4
$^{238}\mathrm{U}$	0.286 [9]	0.078 [10]	0.094 [10]	²⁰⁸ Pb	0.06 [9]	0.04[11]	?	¹⁹⁷ Au	-(0.13-0.16) [12, 13]	?	-0.03 [12]
¹²⁹ Xe	0.16 [12]	?	?	⁹⁶ Ru	0.05-0.16 [14]	?	?	$^{96}{ m Zr}$	0.08-0.22 [14]	?	0.06 [12]

Future opportunity II

Shape tomography of atomic nuclei using collective flow measurements


- Step1: calibrate systematics two species around 197Au: 208Pb & 198Hg (β₂=-0.11)
 - 208Pb √s=0.2 RHIC vs 5 TeV @LHC: precision on IS and pre-equilibrium dynamics?
 - 208Pb \sqrt{s} =0.2 vs 197Au \sqrt{s} =0.2 TeV: control on effects of Au deformation
 - 198Hg \sqrt{s} =0.2 TeV: two systems with known β_2 can triangulate the consistency of β_{2Au} .

Constrain η/s with improved understanding of initial state.

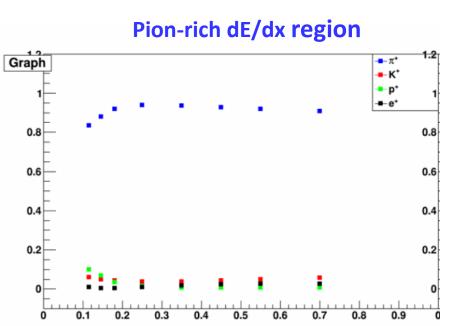

- Step2: explore more exotic regions for triaxiality and octuple
 - Scan an isotopic chain: 144Sm (β_2 =0.08),148Sm (β_2 =0.14,triaxial),154Sm (β_2 =0.34)
 - These elements in region Z~56/N~88, where large octuple is expected/predicted.
 - Compare a pair with equal mass: 154Sm ($\beta_2 = 0.34$) and 154Gd ($\beta_2 = 0.31$)

Use hydrodynamics and flow measurements to perform precision cross-check of low energy nuclear physics.

A_N in diffractive events

Figure 71: Schematic diagrams of (a) nondiffractive, $pp \to X$, (b) singly diffractive, $pp \to Xp$ or $pp \to pY$, (c) doubly diffractive, $pp \to XY$, and (d) centrally diffracted, $pp \to pXp$, events.

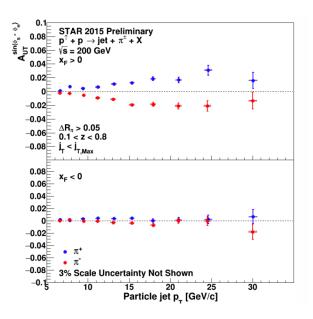
Model with initial and final state effect can only explain the non-isolated $\pi^0 A_N$

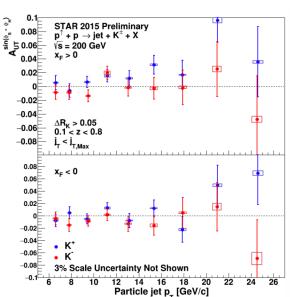

Significantly larger value of A_N for isolated π^0

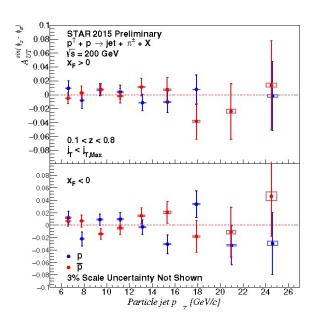
Plan to reconstruct jets produced with scattered proton tagged in Roman Pots with/without rapidity gaps

n, BNL

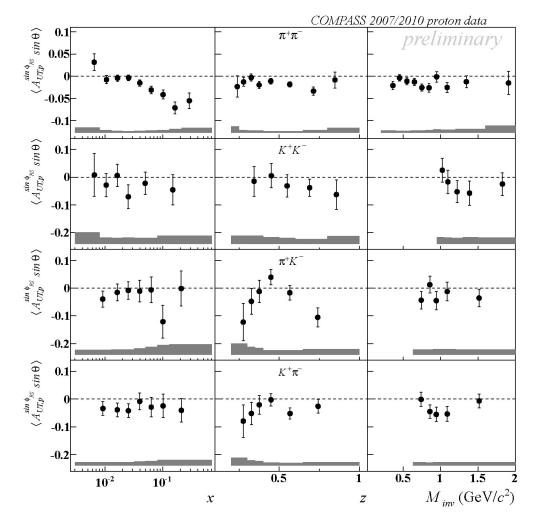
Identified particle composition in one jet p_T bin






- Fractions of π^+ , K^+ , p, and e^+ in jets with 11.7 < p_T < 13.8 GeV/c as a function of z in the 200 GeV 2015 Collins effect measurement (negative hadrons behave similarly)
- Note that, with 2015 dE/dx resolution, the kaon-rich region contains more pions than anything else, but far fewer than in the pion-rich region
- With the iTPC, the pion fraction in the pion-rich region will increase, and for most z bins there will be more kaons than pions in the kaon-rich region
 - After matrix inversion, the pion uncertainties will shrink by ~9% for the same integrated luminosity, and the kaon uncertainties will shrink by ~30%

STAR 200 GeV Collins asymmetries vs. p_T from 2015

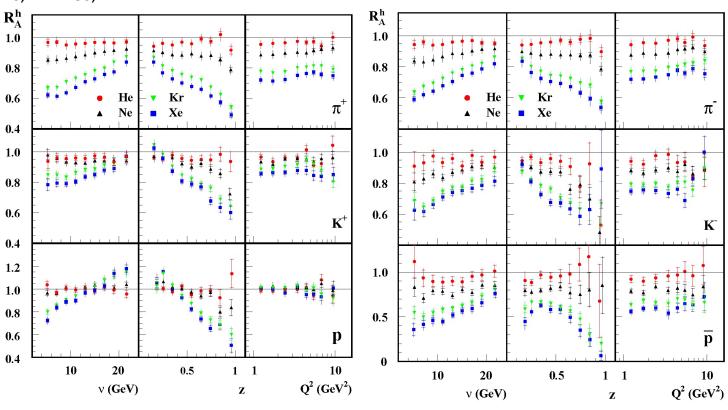


• pi⁺, pi⁻, K⁺, K⁻, p, pbar for both rapidity bins and with the same vertical scale

Lijuan Ruan, BNL 55

Identified particle IFF asymmetries from COMPASS

C. Braun for COMPASS, DIS-2014


 Different particle-type pairs yield different IFF asymmetries

Lijuan Ruan, BNL 56

Species dependence in HERMES nFF measurements

HERMES, NPB 780, 1

Lijuan Ruan, BNL 57